2 100%

2 100%

STUDY MODULE DESCRIPTION FORM Name of the module/subject **Databases** 1010831161010822204 Profile of study Field of study Year /Semester (general academic, practical) **Electronics and Telecommunications** general academic 3/6 Elective path/specialty Subject offered in: Course (compulsory, elective) **Polish Telecommunication Systems** elective Cycle of study: Form of study (full-time,part-time) First-cycle studies full-time No. of hours No. of credits 1 Lecture: 2 Classes: Laboratory: Project/seminars: Status of the course in the study program (Basic, major, other) (university-wide, from another field) other university-wide Education areas and fields of science and art ECTS distribution (number and %)

Responsible for subject / lecturer:

Technical sciences

dr inż. Mariusz Żal

email: mariusz.zal@put.poznan.pl

tel. +48 61 665 3926

technical sciences

Faculty of Electronics and Telecommunications ul. Piotrowo 3A 60-965 Poznań

Responsible for subject / lecturer:

dr inż. Mariusz Żal

email: mariusz.zal@put.poznan.pl

tel. +48 61 665 3926

Wydział Elektroniki i Telekomunikacji ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Has a basic knowledge of computer networks; Has a basic knowledge of C# programming, algebra of sets and relation algebra		
2	Skills	Is able to find information in literature, as well as other reference sources; is able to integrate and interpret obtained information, draws conclusions and justifies		
3	Social competencies	Student understands a necessity to acquire a new knowledge and skills stemming from a chosen field of studies.		

Assumptions and objectives of the course:

To provide students with database models, SQL and PL SQL languages, query formats, embeded functions and extensions. To prepare students to database optymization and programming database applications.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Knows the principles of construction of computer programs; has knowledge from the area of computing science; knows the syntax of C# and Java for PC and mobile devices [K1_W09]
- 2. Has a basic knowledge of network device architectures, standards, network protocols and construction. Knows network layer, transport layer and application layer protocols [K1_W22]
- 3. Has a systematic knoledge of databases. Knows the database management system principles and structured query languages. [K1_W23]

Skills:

- 1. Is able to find information in literature, as well as other reference sources [K1_U01]
- 2. Is able to use future SQL extensions and normal form for solving data base optimization problem [K1_U05]

Social competencies:

- 1. Demonstrates $\,$ responsibility $\,$ for designed software. Is aware of the hazards they pose for individuals and communities if they are improperly designed [K1_K03]
- 2. A student is able to formulate opinions concerning challenges of contemporary networks application programming; A student is aware of the impact of network application on the information society [K1_K04]

Assessment methods of study outcomes

Faculty of Electronics and Telecommunications

Forming assessment:

Lectures: Written exam; exam is passed when student receives at least 50% points. Exam can be taken after the completion of excercises.

Exercices and laboratories:

- evaluation and assessment of knowledge increment that need to be effective in solving problems covering all tasks within a given subject area;
- continuous assessment during daily classroom practice rewarding knowledge increment in skills in management of using rules and methods learnt in class.

Course description

Lectures:

Wykłady:

- 1. Definitions: information, data, data processing. Database models. Database management systems.
- 2. Relation algebra.
- 3. SQL basis, views, sequences, trigers, indexes.
- 4. Embeded SQL functions, PL SQL.
- 5. Database users, access to databases.
- 6. Overwiev of DBMS.
- 7. Database applications.

Exercises:

- 1. Database definitions.
- 2. Simple SQL queries.
- 3. Database modifications.
- 4. Exteneded SQL queries.
- 5. PL SQL procedures
- 6. Database applications.

Basic bibliography:

1. Hernandez, Michael J., Database design for mere mortals: a hands-on guide to relational database design, Addison-Wesley 2005

Additional bibliography:

- 1. Jason Price, Oracle Database 11gSQL, McGrawHill 2008
- 2. PL/SQL User?s Guide and Reference, Release 2 (9.2) Part No. A96624-01

Result of average student's workload

Activity	Time (working hours)
1. Preparation for lectures	10
2. Preparation for exercises	5
3. Preparation for laboratories	10
4. Exam	5

Student's workload

Source of workload	hours	ECTS
Total workload	60	2
Contact hours	50	1
Practical activities	27	1